Mixed-Sequence Recognition of Double-Stranded DNA Using Enzymatically Stable Phosphorothioate Invader Probes.

نویسندگان

  • Brooke A Anderson
  • Saswata Karmakar
  • Patrick J Hrdlicka
چکیده

Development of probes that allow for sequence-unrestricted recognition of double-stranded DNA (dsDNA) continues to attract much attention due to the prospect for molecular tools that enable detection, regulation, and manipulation of genes. We have recently introduced so-called Invader probes as alternatives to more established approaches such as triplex-forming oligonucleotides, peptide nucleic acids and polyamides. These short DNA duplexes are activated for dsDNA recognition by installment of +1 interstrand zippers of intercalator-functionalized nucleotides such as 2'-N-(pyren-1-yl)methyl-2'-N-methyl-2'-aminouridine and 2'-O-(pyren-1-yl)methyluridine, which results in violation of the nearest neighbor exclusion principle and duplex destabilization. The individual probes strands have high affinity toward complementary DNA strands, which generates the driving force for recognition of mixed-sequence dsDNA regions. In the present article, we characterize Invader probes that are based on phosphorothioate backbones (PS-DNA Invaders). The change from the regular phosphodiester backbone furnishes Invader probes that are much more stable to nucleolytic degradation, while displaying acceptable dsDNA-recognition efficiency. PS-DNA Invader probes therefore present themselves as interesting probes for dsDNA-targeting applications in cellular environments and living organisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Merging Two Strategies for Mixed-Sequence Recognition of Double-Stranded DNA: Pseudocomplementary Invader Probes

The development of molecular strategies that enable recognition of specific double-stranded DNA (dsDNA) regions has been a longstanding goal as evidenced by the emergence of triplex-forming oligonucleotides, peptide nucleic acids (PNAs), minor groove binding polyamides, and--more recently--engineered proteins such as CRISPR/Cas9. Despite this progress, an unmet need remains for simple hybridiza...

متن کامل

Bulged Invader probes: activated duplexes for mixed-sequence dsDNA recognition with improved thermodynamic and kinetic profiles.

Double-stranded oligonucleotides with +1 interstrand zipper arrangements of intercalator-functionalized nucleotides are energetically activated for recognition of mixed-sequence double-stranded DNA. Incorporation of nonyl (C9) bulges at specific positions of these probes, results in more highly affine (>5-fold), faster (>4-fold) and more persistent dsDNA recognition relative to conventional Inv...

متن کامل

Invader LNA: efficient targeting of short double stranded DNA.

Despite progress with triplex-forming oligonucleotides or helix-invading peptide nucleic acids (PNAs), there remains a need for probes facilitating sequence-unrestricted targeting of double stranded DNA (dsDNA) at physiologically relevant conditions. Invader LNA probes, i.e., DNA duplexes with "+1 interstrand zipper arrangements" of intercalator-functionalized 2'-amino-alpha-l-LNA monomers, are...

متن کامل

Sandwich assay for mixed-sequence recognition of double-stranded DNA: invader-based detection of targets specific to foodborne pathogens.

A 96-well plate sandwich assay based on Invader capture/signalling probes is used to recognize 28-mer mixed-sequence dsDNA targets specific to Salmonella enterica, Campylobacter jejuni, Escherichia coli. Targets are detected down to 20-55 pM concentration with excellent binding specificity.

متن کامل

Recognition of double-stranded DNA using energetically activated duplexes with interstrand zippers of 1-, 2- or 4-pyrenyl-functionalized O2'-alkylated RNA monomers.

Despite advances with triplex-forming oligonucleotides, peptide nucleic acids, polyamides and--more recently--engineered proteins, there remains an urgent need for synthetic ligands that enable specific recognition of double-stranded (ds) DNA to accelerate studies aiming at detecting, regulating and modifying genes. Invaders, i.e., energetically activated DNA duplexes with interstrand zipper ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 20 8  شماره 

صفحات  -

تاریخ انتشار 2015